Проблема перегрева осветительных светодиодов и пути ее решения
Если сравнивать со стремительно уходящими в прошлое источниками света, то светодиодные источники имеют всего один, но крайне серьезный изъян. Их долговечность и надежность в значительной степени зависят от эффективности отвода тепла от излучающих свет компонентов. Поэтому схема защиты светодиода от перегрева — важная составная часть любой качественной светодиодной системы освещения.
Среднестатистический осветительный светодиод десятикратно превосходит по энергоэффективности (экономичности) традиционную лампочку с нитью накаливания. Однако, если светодиод не установить на радиатор достаточной площади, то он скорее всего быстро выйдет из строя. Принято считать, не вдаваясь в подробности, что более эффективные осветительные светодиоды нуждаются в более эффективном отводе тепла чем обычные.
Давайте, тем не менее, рассмотрим проблему более глубоко. Оценим два фонаря: первый — галогенный, второй — светодиодный. И уже после — обратим внимание на способы сохранения долговечности светодиодов и продления жизни их драйверам. Дело в том, что защитная часть светодиодной системы освещения должна обеспечить безопасное функционирование как светодиодам, так и схемам — драйверам.
К примеру у нас имеется два фонаря. Оба устройства дают по 10 Вт световой мощности. Разница лишь в том, что прожектор на галогенной лампе требует 100 Вт электрической мощности, а светодиод — всего 30 Вт.
Мы знаем, что светодиоды эффективнее по производимому свету примерно в 10 раз, но в реальности они крайне чувствительны к высоким температурам, и для них поэтому очень важен температурный режим, при котором происходит преобразование энергии электрического тока — в свет.
Для светильника с галогенной лампой рабочая температура даже в +400 °C является безопасной нормой, в то время как для светодиодов температура кристалла в +115 °C уже критически опасна, а максимальная температура корпуса диода составляет всего +90 °C. Поэтому светодиоду нельзя давать перегреваться, и на то есть несколько причин.
С повышением температуры светоизлучающего перехода, световая эффективность светодиода понижается, и это зависит как от конструкции светодиода, так и от состояния окружающей среды. К тому же светодиоды в принципе отличаются отрицательным температурным коэффициентом прямого падения напряжения на переходе. Это значит, что с увеличением температуры перехода, прямое падение напряжения на нем уменьшается. Обычно данный коэффициент варьируется от -3 до -6 мВ/К.
Таким образом, если при 25 °C прямое падение напряжения на светодиоде составляет 3,3 В, то при 75 °C оно будет уже 3 или менее вольт. И если драйвер светодиода не уменьшает по мере роста температуры напряжение на всех светодиодах сборки, то в один прекрасный момент ток станет поддерживаться неадекватно высоким, что приведет к перегреву, перегрузке, дальнейшему снижению прямого падения напряжения, и еще более быстрому нарастанию температуры кристалла. Дешевые светодиодные светильники с резистивным ограничением тока часто проявляют данный недостаток в самый неожиданный момент.
Допуски по колебаниям напряжения блока питания в сочетании с различиями в прямом падении напряжения на светодиоде (на этапе производства светодиоды не идеально одинаковы по данному параметру), и в связи с отрицательным температурным коэффициентом падения напряжения — в любой момент эти факторы в совокупности могут вызвать нарушение безопасного режима функционирования светодиода и спровоцировать скатывание к его саморазрушению.
Конечно, если конструкция светодиодного светильника (особенно — радиатора) достаточно надежна, то кратковременными снижениями яркости можно пренебречь, так как они очень редки и перегревы эти кратковременны. Но если перегрев продолжителен, то превышение температуры сразу превращается в настоящую угрозу для светильника.
Причины выхода светодиодов из строя при их перегреве
Светодиоды разрушаются от перегрева по нескольким причинам. Первая причина — изменение механического напряжения внутри светоизлучающего кристалла и монолитной светодиодной сборки. Вторая — нарушение герметичности, проникновение влаги и окисление. Защитный эпоксидный слой деградирует, происходит расслоение на границах, контакты кристалла испытывают коррозию.
Третья — рост количества дислокаций в кристалле ведет к изменению путей тока и возникновению точек превышения плотности тока и, соответственно, к перегреву этих точек. Наконец — явление диффузии металлов на контактах при повышенной температуре, что также в конце концов приводит к неработоспособности светодиода.
Разработчики светодиодов всеми силами пытаются свести к минимуму данные факторы отказа, и поэтому все время технологически совершенствуют производственный процесс. Тем не менее из-за перегрева отказы все равно неизбежны, хотя и становятся реже с совершенствованием производственного процесса.
Механическое давление — самая частая причина преждевременного выхода светодиодов из строя. Суть в том, что при перегреве герметик размягчается, электрические контакты и соединительные проводники смещаются от «заводского» положения, а когда температура наконец падает, происходит охлаждение, и герметизирующее вещество вновь застывает, но при этом давит на уже немного смещенные соединения, что в итоге приводит к явному нарушению первоначально равномерной проводимости. Благо, светодиоды изготовленные без соединительных проводников практически лишены данного недостатка.
Паяные соединения между светодиодом и подложкой также испытывают похожую проблему. Регулярные циклические, не заметные на глаз, размягчения и затвердевания заканчиваются появлением трещин в пайках и нарушением исходного контакта. Вот почему встречаются отказы светодиодов по причине разрыва цепи питания, причем разрыв этот часто не виден. Чтобы предотвратить данную проблему, можно максимально уменьшить разницу между безопасной рабочей температурой светодиода и температурой окружающей среды.
Мощные светодиоды (потребляющие больше электрической мощности) дают больше света, но их световая отдача все же имеет ограничение. Вот почему у потребителей и производителей часто возникает опасный соблазн эксплуатировать светодиоды в светильнике на полную мощность, дабы получить максимально возможную яркость. Но это действительно опасно, если не обеспечить достаточно эффективного охлаждения.
Разумеется, дизайнеры хотят создавать элегантные светильники интересных форм, однако они порой забывают что необходимо обязательно обеспечить соответствующее движение воздуха и адекватный отвод тепла — это для светодиодов зачастую самое главное, следующее за стабилизированным и качественным источником питания.
Да и непосредственно установка светодиодных светильников важна. Если один светильник установлен над другим таким же мощным, то поток воздуха от нижнего светильника может быть замедлен верхним, и нижний будет находиться поэтому в худших температурных условиях. Либо например теплоизоляция в стене или на потолке помещения может помешать теплоотводу, даже если при конструировании светильника все тепловые расчеты были выполнены идеально и технологически он изготовлен максимально правильно. Все равно вероятность отказа повышается просто из-за необдуманного и неграмотного монтажа готового изделия.
Одно из достойных решений проблемы перегрева светодиодов — включение в схему драйвера температурной защиты с обратной связью именно по температуре. Когда температура излучателя по какой-нибудь причине опасно повысилась — для понижения мощности, с целью удержания температуры внутри безопасного диапазона, автоматически уменьшается ток.
Простейшее решение — добавить в схему термистор с положительным температурным коэффициентом (можно и с отрицательным температурным коэффициентом, но тогда схема должна инвертировать сигнал в цепи обратной связи).
Пример термической защиты с использованием термистора
Для примера рассмотрим схему на базе специализированного микроконтроллера с токоограничительной цепью. Когда температура поднимается выше определенного порога (задается термистором и резисторами), термистор с положительным коэффициентом сопротивления, закрепленный на радиаторе вместе со светодиодами, увеличивает свое сопротивление, что приводит к соответствующему уменьшению тока в выходной цепи драйвера.
В этом плане очень удобны схемы драйверов с регулировкой яркости по принципу ШИМ (широтно-импульсной модуляции), позволяющие одновременно и вручную регулировать яркость, и защищать светодиоды от перегрева.
Решение с термистором удобно тем, что изменение тока, а значит и уменьшение яркости, будет в такой схеме происходить плавно, незаметно для глаз и нервной системы, а значит ничего не будет мерцать и не вызовет у окружающих людей и животных раздражения. Температура верхней границы просто определяется выбором термистора и резистора. Это гораздо лучше решений с термодатчиками, которые просто резко размыкают цепь и дожидаются пока радиатор остынет, а потом снова включают освещение на полную яркость.
Специализированные микросхемы-драйверы светодиодов, безусловно, стоят денег, однако получаемые взамен надежность и долговечность работы светильника многократно окупят это вложение.
Стоит лишь вспомнить, что при соблюдении нормального температурного режима эксплуатации светодиодов их срок службы измеряется десятками тысяч часов, тогда и вопросы касательно материальных затрат на «правильный» драйвер отпадают сами собой.
Важно лишь обеспечить самому драйверу постоянную невысокую температуру, для этого всего лишь не нужно размещать его близко к радиатору светодиодов. Не правильно делают те, кто донельзя стремится уплотнить размещение компонентов внутри корпуса прожектора. Лучше вывести корпус драйвера отдельным блоком. Здесь безопасность и предусмотрительность — залог долговечности светодиодов.
Лучшие микросхемы для управления питанием светодиодов оснащены внутренними цепями защиты от собственного перегрева на тот случай если микросхема по конструктивным соображениям разработчика светильника все же должна размещаться в одном корпусе с заметно нагревающимися компонентами, такими как радиатор. Но лучше вообще не допускать перегрева микросхемы выше 70 °C и оснастить ее собственным радиатором. Тогда и светодиоды и микросхема драйвера проживут дольше.
Интересным может оказаться решение с применением двух последовательно соединенных термисторов в цепи термической защиты. Это будут разные термисторы, так как безопасные температурные границы у микросхемы и у светодиодов различны. А вот результат будет достигнут что надо — плавная регулировка яркости как при перегреве драйвера, так и при перегреве светодиодов.
Андрей Повный
Надеюсь, что эта статья была для вас полезной. Смотрите также другие статьи в категории Освещение дома, Все про светодиоды
Войти в систему
2019 - 2023 | IA-STUDIO |